If it's not what You are looking for type in the equation solver your own equation and let us solve it.
29^2+x^2=35^2
We move all terms to the left:
29^2+x^2-(35^2)=0
We add all the numbers together, and all the variables
x^2-384=0
a = 1; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·1·(-384)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*1}=\frac{0-16\sqrt{6}}{2} =-\frac{16\sqrt{6}}{2} =-8\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*1}=\frac{0+16\sqrt{6}}{2} =\frac{16\sqrt{6}}{2} =8\sqrt{6} $
| 50=16q=+2 | | 15=1-7x | | (13/5)-(x/6)=2x | | -4=6=w | | 2/3x+1/6=1/2 | | -2+v=-5 | | w/8+1=9 | | 80+19v=-13(12-6v | | 2h=68 | | (x/2)+3x=7 | | 5x+14=-5 | | f/5-7=13 | | 2(6x+3)+4(3x+5)+5=24x+31 | | 1/3x+4=2/3 | | -1=1/4x+3 | | 1.75a=21 | | 8.29=2.5+10m | | 37x+x=172 | | x-6=0,5x-2 | | 8.29=10m+2.5 | | 30=6+4x= | | (2x-3)/6=2x/3+3/2 | | -6y-7(-3y+4)=4-3(8-y) | | 2.5+10m=8.29 | | (2x+8)(7x^2-9x=5 | | 2w=w+11 | | 7s-16=166 | | 11=k-1/3 | | |12-3z|=|15-6z| | | -4(x+3)+6=-3(x+4) | | Y=1/4x-1+3 | | 4x+43+40=5x |